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A modified-rigid-lid numerical ocean model consisting of a tendency equation for 
vorticity and a Hehnholtz equation that relates vorticity to a streamfunction is presented. 
Integration of the vorticity equation involves a fourth-order fractional-time-step 
method. The Hehnholtz equation is inverted by a partial Fourier transform technique. 
The large scales in the numerical solutions obtained from this model can be made to 
agree with those obtained from a free-surface model by adjusting the parameter in the 
Hehnholtz equation. A comparison of computational speeds made between this model 
and a free-surface model shows the modified-rigid-lid model to be faster by a factor of 
five. 

I. INTRODUCTION 

In a previous article [l] a numerical model for viscous, free-surface barotropic 
flow in a wind-driven ocean basin was presented. It was pointed out that if gravity 
waves could be excluded from the model, the integration time step could be 
increased by more than an order of magnitude. We shall continue this investigation 
here by considering a numerical model from which these waves have been excluded. 
We will consider only the transient solution in the barotropic case with the hope 
that the techniques developed can later be applied to baroclinic models (where 
integration times of the order of centuries [2] may be necessary). Although both 
internal and external gravity waves may exist in baroclinic models, we consider 
here only the barotropic case so that statements about gravity waves pertain 
only to external gravity waves. We will find that although the rigid-lid filter 
seriously distorts the transient solution, the filter can be modified so that reasonable 
large scale approximations to the free-surface transient solution may be obtained 
with filtered equations. 

It is usually assumed that gravity waves contribute very little information to 
the solution of large scale ocean circulation problems; in excluding these waves 
from the solution, the exclusion process itself may, however, exert a considerable 
effect on the solution. The filtering is usually accomplished by adjusting the 
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equations of motion so that physical phenomena responsible for these waves are 
inoperative. For example, according to Thompson [3], Charney found that solu- 
tions from geostrophic models are free from gravity waves. Moreover, Charney’s 
geostrophic filter approximately preserves the phase speed of Rossby waves. 
We choose to follow a different course from Charney’s; recognizing that gravity 
waves are vertical-transverse waves, we see that the elimination of a free upper 
surface precludes the existence of these waves. After Bryan [4] we shall then in 
effect clamp a rigid lid onto the basin; the resulting rigid-lid equations consist 
of a tendency equation for vorticity and a Poisson equation relating the stream- 
function to the vorticity. 

An alternate, quite interesting, rigid-lid method employed by Berdahl [5] does 
not explicitely make use of a streamfunction-rather the incompressibility condi- 
tion is used to relate the pressure to the velocity field through an elliptic equation. 
The pressure then provides an acceleration for the primitive equations. 

Unfortunately, the rigid-lid equations drastically increase the phase speed of 
Rossby waves; a rigid-lid model will thus fail in simulating the transient response 
of an ocean basin. However, if we modify the rigid-lid equations by replacing 
the Poisson equation with a Helmholtz equation, we somewhat heuristically 
introduce a parameter that may be adjusted to slow down the Rossby waves. 
The model presented here thus consists of modified-rigid-lid equations and it can 
be shown that for the scales of motion considered, the modified-rigid-lid equations 
are approximately equivalent to Charney’s geostrophically filtered equations. 

The equations of the model are solved by finite difference techniques. A fourth- 
order time-splitting technique is used for the vorticity tendency equation, and a 
partial Fourier transform technique is used to invert the Helmholtz equation. 
It is found that a time step of 2 hr is permitted with a spatial increment of 170 km 
(this should be compared to a time step of 0.125 hours for the free-surface 
case). 

In the free-surface solution small scale (h = 2dx) motions appeared even though 
the energy source was large scale (h N basin size). This then necessitated the 
inclusion of a horizontal eddy-viscosity for numerical reasons and it was asserted 
that the small scales were produced from large scales by a cascade of vorticity. 
It now appears that this assertion was wrong, for in the rigid-lid model it is possible 
to compute with no explicit eddy diffusion coefficient; at least this is possible for 
the times of interest in this problem. Further comments on this matter will be 
found in Section IV. 

In Section II, the modified-rigid-lid equations and boundary conditions are 
presented, a justification for the modification is made, and the equivalence between 
these equations and the geostrophically filtered equations is noted. Section III 
contains the finite difference equations and a description of the ocean basin. 
A comparison of this model with a free-surface model with respect to solutions 
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and computational speeds is made in Section IV, and a summary of this work 
appears in Section V. 

II. EQUATIONS AND BOUNDARY CONDITIONS 

In this section we will present the equations of motion and the boundary condi- 
tions for the modified-rigid-lid model. An a priori justification for the modification 
is made based on linear theory-an a posteriori justification will be found in 
Section IV. However, it must be emphasized that only the early part of the transient 
barotropic solution is under consideration here. The effect of the Helmholtz term 
on the steady solution in the barotropic case remains to be studied. 

The rigid-lid equations of motion are obtained from those for free-surface 
flow [l] by imposing the condition H = constant-that is, ah/at = 0. The 
continuity equation then admits a streamfunction 

and (II- 1) 

and cross-differentiation of the two momentum equations transforms them into 
a vorticity equation, 

where 

(11-2) 

is the relative vorticity. Equations (II-l) and (11-3) may be combined to give 

v2* = 5, 

a linear equation relating the streamfunction to the vorticity. 
The absolute vorticity (1 = 5 +f obeys the equation 

(11-4) 

1 a9 
Kv2c+---, 

H ay 
(11-5) 

where f =fO + fly is the Coriolis parameter; /3 = 0.64 x lo-* km-l hr-l. In the 
absence of wind stress and dissipation, Eq. (11-5) indicates that the total absolute 
vorticity is a constant of the motion. 
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Equations (11-2) and (11-4) are the fundamental equations for barotropic 
nondivergent, wind-driven, viscous flow on a p-plane. (In being consistent with 
the previous article, we have used the p-plane approximation and have assumed 
a zonal wind stress and zero bottom drag.) 

It is known [6,7] that Eqs. (11-2) and (11-4) produce solutions in which the 
phase velocities are too large when compared with free-surface solutions. This 
is seen for the linear plane wave case, if we assume a solution of the form 

#(-& y, t) = Eimz+zb7t)~ 

Substitution into Eqs. (11-2) and (11-4) gives, if we neglect advection, dissipation 
and the wind-stress, 

-43 
*=m 

while for the free-surface case [8], 

The phase speed (u/k) is thus greater in the nondivergent than in the free-surface 
case. However, if we replace the Poisson equation (11-4) with a Helmholtz equation 

P - r”># = 5, 

where y2 is a constant, we find the following relation for the frequency: 

(11-6) 

u = k2 + 12 + ,,2 - (11-7) 

Comparing this with u for the free-surface case we have 

y2 = f 2/gH. (11-8) 

Thus we can perhaps slow down the evolution of the nondivergent solution if 
we use Eq. (11-6) in place of (11-4). The only free parameter is y, and we will be 
able to determine it experimentally. In Section IV we will find that the choice 

gHy2 = (fo + BY/2)2 

produces a solution that is quite similar to the free-surface solution. 
The differential equations for this model are thus Eqs. (11-2) and (11-6). 
Another way of titering gravity waves from the solution is to make the geostro- 
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phic approximation (see Thompson [3] p. 79). This approximation leads to a 
more complicated set of equations than those used here, but the phase of the 
solution is approximately that of the free-surface case. It can be shown that the 
geostrophic filtering approximation is equivalent to the rigid-lid filter used here if 
Vz# <f: It will be seen in the solutions presented here that Vz# - O.O03f, a 
good indication that for the scales of motion appearing in these solutions, the 
modified rigid-lid equations (II-2 and 11-6) are equivalent to the geostrophically 
filtered equations. 

The boundary conditions used here are identical to those for the free-surface 
model. We wish to compute the flow in a square basin on a p-plane and we take 
northern and southern boundaries to be no-transport, free-slip boundaries while 
along the eastern and western boundaries the no-slip condition is imposed. If 
0 < x < X and 0 < y < Y, we have, for the streamfunction, 

and for the vorticity, 

5(x, 0, t) = 5(x, Y, t) = 0. 

Along eastern and western boundaries, the vorticity is permitted to change in 
time in accordance with Eq. (11-2). 

The wind stress is taken to be a function of y alone, 

TX = Ii& cos 7ry/Y (H-9) 

and it is seen that the curl of the wind stress does not change sign within the basin. 

III. FINITE DIFFERENCE EQUATIONS 

As in the free-surface model, we employ finite difference techniques here to 
solve the equations of motion. A square basin 4440 km on a side is subdivided 
into 26 zones each of which is thus approximately 170 km square. If the space-time 
mesh-point coordinates are given by xk = k dx, yz = 1 dy and t, = n At and 
the primary variables are centered at mesh points, we have <i,, and I,& . The 
velocities, u&1,2 , v&,r are offset in accordance with Eqs. (II-I). 

Given the spatial distribution of vorticity at any time t, the dependent variables 
are advanced to time t + dt as follows. Equation (H-6) is solved for the stream- 
function at time t, 
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velocities are obtained from the streamfunction, 

4,2-l/2 = 
At, z->; *at. 1 

2 4Ll2,l = 
?K 1 ,$:-l, 1 ; 

and the vorticity is then advanced to t + At by a finite difference approximation 
to Eq. (11-2). The details of these calculations follow. 

Equation (III-l) is solved by a method used in plasma calculations [9] and 
related to a method used in a previous ocean circulation calculation [lo]. We 
note that the northern and southern boundary conditions on 5 and # permit 
them to be expanded in a sine series 

*k,z = i ak,p sinp&AylY 
p=1 

and 

(111-2) 

(111-3) 

where 0 < I < P + 1. If we, for the moment, think of $ and 5 as continuous 
variables we may differentiate Eq. (111-2) and substitute into Eq. (11-6) to obtain 

g a(x, p> - [(q)’ + yz] a(x, p> = b(x, PI 

a set of P ordinary differential equations which are solved by the backward 
substitution method [l 1, 121. A difference equation for ak is (for fixed p) 

where 

-a,+, + Qak - ak-l = -b, Ax2, (111-4) 

Q(P) = 2 + (+)’ + y2 Ax2. 

Following Richtmyer [I21 we assume a relation 

a, = -%ak,l + Fk 

and Iind 

and 
Ek = Q -‘E,, 

Fk = (Fk;,_, - bk Ax2) Ek . 

(111-5) 

(111-6) 
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The boundary conditions on # give E,, = F. = 0 as starting conditions. Equations 
(111-6) are solved forward through the mesh for EI, and Fk ; Eq. (111-5) is then 
solved backwards through the mesh for ug . 

The solution of Eq. (III-l) proceeds as follows. We have 5 and solve Eq. (111-3) 
for h., ; next Eq. (111-4) is solved for ak,3, ; finally #k,.Z is obtained from Eq. (111-2). 

If the eastern and western boundary conditions were changed to free-slip 
conditions, 5 and # could then be expanded in a double Fourier series. This would 
reduce the set of ordinary differential equations to a set of algebraic equations 

which would produce a more accurate solution to the differential equation. 
However, this technique would be slower than the partial technique used here 
by a factor of approximately X/Ox. 

Obviously, Fourier transform techniques depend upon the boundary conditions, 
and the technique used here is probably not applicable to more realistic ocean 
basins. In that case, one can resort to iterative techniques to invert the Helmholtz 
equation (Eq. 11-6). According to Ellsaesser [13] the Helmholtz term acts to 
speed up convergence of these iterative schemes. 

Before writing the difference equation for vorticity, we rewrite Eq. (11-2) in 
a divergence form to display its conservative nature 

a aF aG -= ---- 
at ax ay * 

where 

and 

and note that the total relative vorticity is changed only by boundary fluxes 
and the wind stress 
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The advective part of the fluxes F is approximated to fourth order [14] by 

A- (u 1k+1,2,z = $ [9(5kfl.Z + 5b.I) - (5k,%Z + L1.d AX 

- f [27(5k+1,z - tksz) - (5k+2,z - 5k-l.z)~ 

- g K5k+l,z + 5k.Z) - Gc+2.z + l-k-1, EN 

(114 
+ 2;1[3Gc+1. z - 5k. 1) - G-k+% z - L-LJI 

and a similar form is used for the advective part of G. For points adjacent to 
boundary points, the above form may not be used, and a second order approxima- 
tion is necessary [14]; thus for k = K - 1 or k = 0, 

* 5u 1k+1,2,z = qcr;,,.z + 5k.3 - $k,l.Z - 5k.Z). AX 

As before, a similar form is used for I = L - 1 and I = 0. In these expressions, 
the nondimensional parameter cy. is uR+1/2,z At/Ax in the 5~ expression and 
uK,z+1/2 At/Ay in the &J expression. 

The diffusive flux is given by a centered difference 

al 
Kax ktll2.1 

= 2 (5*+1. z - 5k. 1) 

and the /?-term by an average 

Iv I ?c+1/2.z = Msh+1.z + ~k.Z)- 

Once the fluxes F and G have been computed, the vorticity is advanced from t 
to t + At by the method of fractional time steps (due to Marchuk [15]); 

r;,*., = tikn,z - Ax -%L,e.z - FEmz) 

and 

sg?= G.z- -$- (‘Zt, ztl,z - G:. z-I,J 

where “*” indicates some intermediate value between t and t + At. The flux Fn 
involves 5” and u” while the flux G* involves c* and P. 
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IV. NUMERICAL RESULTS 

A number of different variations on a particular problem have been run with 
the modified-rigid-lid model. The basic problem is the same one that was studied 
in the free-surface case-a constant depth, square ocean basin is divided into 
26 equally spaced zones in each direction and is subjected to a zonal wind stress. 
Since the curl of the wind stress does not change sign within the basin, no gulf- 
stream separation is anticipated. The ocean is initially at rest and the transient 
solution is dominated by Rossby waves [16]. 

We shall be concerned with two aspects of these calculations. First, we will 

FIG. 1. Contour lines of the north-south velocity component (a) at day 29 for y* = 0 (the 
unmodified-rigid-lid case). The plotting convention is positive (northward) or zero values of v 
appear as solid lines; negative values of u appear as broken lines. The contour interval is 0.0375 
km/hr. The tirst two western zones are not plotted so that the rest of the field may be adequately 
defined. The same plotting convention holds through Fig. 4. 



192 CROWLEY 

demonstrate that, with the proper choice for y, the modified-rigid-lid solutions 
can be brought into approximate agreement with the free-surface solutions. 
We will also inquire into the dependence of the solution upon the value of the 
horizontal eddy viscosity coefficient. 

For the investigation undertaken here it is sufficient to make qualitative rather 
than quantitative comparisons-to this end, contour plots of the north-south 
component of velocity are presented here. As before, the first two western zones 
are deleted from the plot so that the resolution necessary for the rest of the 
basin gives a tolerable picture overall. The contour interval in the zj plots is 
3.75 x 1O-2 km hr-l which, for a depth of 0.4 km compares with the contour 
interval 1.5 x 1O-2 km2 hr-l for Hc in the free-surface case. The plotting conven- 
tion is: solid lines correspond to positive or zero values of U; broken lines 
correspond to negative (southward) values. To give a more complete picture of 
the flow field, some plots of the streamfunction are also included. With these 

i 

FIG. 2. Contour lines of v at day 29 for yZ = foa/gH. 
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are associated a contour interval of 106 km2 hr-l. As before, these computer 
produced contour plots are unaided by human interpretation. 

Since the evolutionary details of the transient solution were given elsewhere 
for this basin and windstress [I], it is not necessary to repeat them here. Rather, 
we will show the rigid-lid and modified-rigid-lid solutions at 29 days of model 
time-these may be compared with Figs. 12 and 22 from the previous article. 

Unless otherwise mentioned, the parameters involved have the following 
values: dt = 2 hr, K = 36 km2/hr (lo8 cm2/sec), dx = 170 km,f, = 0.18 hr-I, 
p = 0.64 x 1O-4 km-l hr-l, H = 0.4 km, & = 0.004 km2 hr-2, Y = 4440 km. 

Figures 1 through 4 are contour plots of the north-south velocity field (u) at 
day 29 for the following four cases: y2 = 0, gHy2 =fo2, gHy2 = (J, + /3Y/2)2, 
gHy2 = (fO + j3Y)2. In each of these cases, K = 36 km2 hr-l. As y increases from 

FIG. 3. Contour lines of v at day 29 for y* = (fO + fl Y/2)l/gH. This figure compares favorably 
with Fig. 12 of Ref. [l]. 



194 CROWLEY 

zero, the phase velocity of Rossby waves decreases (Eq. 11-7) and we see that 
as y increases, the fixed-surface solution first becomes more like the free-surface 
solution, and then less like it. Figure 5 is a plot of the streamfunction at day 29 
for gHy2 = (fO + pY/2)2. It compares favorably with Fig. 22 of the free-surface 
article. From Figs. 3 and 5 we conclude that the choice 

Y2 = (Al + BW2W 

is a reasonable one for matching free- and modified-fixed-surface solutions. That 
is, the best value off to be used in Eq. II-8 is apparently the value obtained 
by averaging f over the basin under consideration. 

In the free-surface model, it was found that a nonlinear eddy viscosity permitted 
small scales of motion to develop without the onset of computational instability. 

RG. 4. Contour lines of v at day 29 for ya = (fO + bY)2/gH. Comparison with Fig. 12 of 
Ref. [1] shows that the Rossby wave phase speed has been slowed too much by this choice Of Y’. 
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FIG. 5. The streamfunction at day 29 for y* = (fO + pY/2)*. This compares quite well with 
Fig. 22 of Ref. [I]. The contour interval is 106 km’ hr-I. 

Since this is permitted, not caused, by the nonlinear viscosity formulation, it 
would seem to follow that the same phenomena would be observed here. However, 
this is not the case. In fact, the fixed-surface model will operate (at least for the 
time scales of interest here) with no eddy viscosity at all and Fig. 6 is a contour 
plot of the streamfunction at day 29 for K = 0 and y = 0. It is seen that the 
large scales are quite intense relative to the viscous solution and that no small 
scales have developed at this time-this requires a revision of the explanation 
previously offered. 

Fjortoft [17] considered the spectral properties of two dimensional nondivergent 
flows and noted that if energy initially occurs in (at least) three large scales, the 
nonlinear advective terms would cause it to cascade into smaller scales. However, 
the resulting ratio of energy in small scales to energy in large scales is less than 
the square of the scale lengths. The single mode, large scale forcing function 
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FIG. 6. The streamfunction for the inviscid case (K = 0) at day 29 for y2 = 0. Comparison 
with Fig. 5 shows, in addition to the effect of y, the intensification of the flow field. The gyre 
that appeared in the nonlinear viscosity solution (Ref. [l], Fig. 19) is absent here. 

used here would then seem to preclude the importance of the nonlinear energy 
cascade for early times. Thus Fjortoft’s analysis apparently accounts for the lack 
of small scale activity observed in the early transient phase of the nondivergent 
solution, but we must look elsewhere for an explanation for the free-surface 
solution. 

A significant difference between free- and tied-surface models is that both 
potential and kinetic energy are associated with the former while only kinetic 
energy may appear in the latter. Thus there is a possibility of energy exchange 
in free-surface models that does not occur in rigid-lid models. Since the potential- 
kinetic transfer term is nonlinear, it is likely that this interaction accounts 
for the small scale motions observed in the free-surface model. 

Figure 7 is a plot of the kinetic energy for the first 25 days for five different 
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/ 240 

FIG. 7. The kinetic energy for the first 25 days for several problems. Curves D and E show a 
small amplitude oscillation in kinetic energy after the initial spin-up time, but it is not apparent 
on this scale 

problems. There are three different eddy viscosity coefficients for the unmodified- 
rigid-lid case (r = 0; K = 0, 18, 36 km2 hr-l). For the viscous case (K = 36) there 
are three different values of y; gHy2 = 0, (fO + /3Y/2)2, and (fO + BY)“. The last 
two cases show a small amplitude oscillation for t > 360 hours. 

On a CDC 6600 computer, it takes 0.0107 minutes to compute one cycle (2 
model-hr) in the rigid-lid case. For the free-surface model, it takes 0.00348 min 
to compute one cycle (0.125 model-hr). The rigid-lid model is thus five times 
faster than the free-surface model. Stated another way: to obtain a barotropic 
solution for a certain number of model hours will take five times more computer 
time with the free-surface model than with the rigid-lid model. It is expected 
that the factor of five holds for baroclinic as well as barotropic solutions so that 
for large scales of motion (A > 340 km), it is certainly more efficient to use the 
modified-rigid-lid model than the free-surface model. However, as the scales of 
motion become smaller, Gates [18] has shown that the effects of a free surface 
become more important. Thus at some point it will become necessary to use a 
free-surface model in order to obtain accurate transient solutions. 
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V. SUMMARY 

We have compared viscous numerical solutions from a modified-rigid-lid model 
with those obtained from a free-surface model and have found that the large 
scales of the two qualitatively agree if the Helmholtz parameter is chosen to be 

Y2 = cfo + Pw2/g~. 
However, a small scale transient gyre appeared in the free-surface solutions 

that was absent from all (even the inviscid) solutions obtained with the modified- 
rigid-lid model. The nonlinear potential-kinetic energy transfer term thus appears 
to be more important than the energy cascade (due to nonlinear advection) in 
creating small scales from large at early times. 

It is concluded that the relative computational efficiency of the rigid-lid model 
makes it adequate for integrations in which small scale motions are unimportant. 
This is particularly true for long term climatological integrations involving years 
of model time and months of computer time. However, for an accurate representa- 
tion of small scale motions in transient solutions, the free-surface model is a 
necessity. 

ACKNOWLEDGMENT 

This work was performed under the auspices of the United States Atomic Energy Commission. 

REFERENCES 

1. W. P. CROWLEY, A numerical model for viscous, free-surface, barotropic, wind-driven ocean 
circulations, J. Camp. Phys. 5 (1970), 139. 

2. S. MANABE AND K. BRYAN, Climate calculations with a combined ocean-atmosphere model, 
J. Atmos. Sci. 26 (1969), 786. 

3. P. D. THOMPSON, “Numerical Weather Analysis and Prediction,” MacMillan, New York, 
1961. 

4. K. BRYAN, A numerical investigation of a nonlinear model of a wind-driven ocean, J. Atmos. 
Sci. 20 (1963), 594. 

5. P. BERDAHL, “Oceanic Rossby Waves: A Numerical Rigid-Lid Model,” University of 
California, Lawrence Radiation Laboratory, Livermore Report UCRL-50547, 1968. 

6. B. BOLIN, An improved barotropic model and some aspects of using the balance equation for 
three-dimensional flow, Tellus, 8 (1956), 61-75. 

7. A. WIIN-NIELSEN, On barotropic and baroclinic models, with special emphasis on ultra-long 
waves, Monthly Weather Rev. (May 1959), 171-183. 

8. M. S. JLINGUET-HIGGINS, Planetary waves on a rotating sphere. II, Proc. Roy. Sot. Ser. A 
284 (1965), 40-68. 

9. R. W. HOCKNEY, A fast direct solution of Poisson’s equation using fourier analysis, J. Ass. 
Comp. Much. 12 (1965), 95-113. 



NONDIVERGENT, BAROTROPIC, WIND-DRIVEN, OCEAN CIRCULATIONS 199 

10. G. VERONIS, Wind driven ocean circulation. Part 2. Numerical solutions of the non-linear 
problem. Deep Sea Res. 13 (1966), 31-56. 

11. S. K. GODIJNOV AND V. S. RYABENKI, “Theory of Difference Schemes,” (E. Godfredsen, 
Transl.), p. 146, North-Holland Publishing Co., Amsterdam, 1964. 

12. R. D. RICHTMYER AND K. W. MORTON, “Difference Methods for Initial Value Problems,” 
2nd ed., p. 198, Interscience, New York, 1967. 

13. H. W. ELLSAESSER, private communication. 
14. W. P. CROWLEY, Numerical advection experiments, Monthly Weather Rev. 96 (1968), l-11. 
15. G. MARCHUK, Theoretical model for weather forecasting, Dokl. Akud. SSSR 155 (1964), 

1062-1065. 
16. W. L. GATES, A numerical study of transient Rossby-waves in a wind-driven homogeneous 

ocean, J. Atmos. Sci. 25 (1968), 3-22. 
17. R. FJDRTOFT, On the changes in the spectral distribution of kinetic energy for two-dimensional, 

nondivergent flow, Tellus 5 (1953), 225-230. 
18. W. L. GATES, On the dynamical formulation of the large-scale momentum exchange between 

atmosphere and ocean, J. Marine Res. 24 (1966), 105-l 12. 


